首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   93600篇
  免费   301篇
  国内免费   813篇
  2023年   4篇
  2022年   4篇
  2021年   13篇
  2020年   6篇
  2019年   22篇
  2018年   11846篇
  2017年   10679篇
  2016年   7464篇
  2015年   600篇
  2014年   315篇
  2013年   325篇
  2012年   4230篇
  2011年   12845篇
  2010年   12011篇
  2009年   8234篇
  2008年   9809篇
  2007年   11381篇
  2006年   280篇
  2005年   522篇
  2004年   989篇
  2003年   1041篇
  2002年   786篇
  2001年   257篇
  2000年   167篇
  1999年   32篇
  1998年   16篇
  1997年   28篇
  1996年   12篇
  1995年   3篇
  1994年   7篇
  1993年   33篇
  1992年   22篇
  1991年   42篇
  1990年   11篇
  1989年   8篇
  1988年   18篇
  1987年   14篇
  1985年   3篇
  1984年   11篇
  1983年   17篇
  1982年   5篇
  1975年   6篇
  1972年   246篇
  1971年   274篇
  1970年   5篇
  1965年   13篇
  1962年   24篇
  1956年   5篇
  1944年   12篇
  1940年   10篇
排序方式: 共有10000条查询结果,搜索用时 234 毫秒
991.

Introduction

Lactic acid bacteria (LAB) play an important role in the food industry as starter cultures to manufacture fermented food, and as probiotics. In recent years, there has been an increasing interest in using LAB cultures for biopreservation of food products. It is therefore of great interest to study the detailed metabolism of these bacteria.

Objectives

This study aimed at developing an efficient analytical protocol for real-time in vitro NMR measurements of LAB fermentations, from sample preparation, over data acquisition and preprocessing, to the extraction of the kinetic metabolic profiles.

Method

The developed analytical protocol is applied to an experimental design with two LAB strains (Lactobacillus rhamnosus DSM 20021 and Lactobacillus plantarum subsp. plantarum DSM 20174), two initial pH levels (pHi 6.5 and 5.5), two levels of glucose concentration (2.5 and 0.25 g/l), and two batch fermentation replicates.

Results

The design factors proved to be strongly significant and led to interesting biological information. The protocol allowed for detailed real-time kinetic analysis of 11 major metabolites involved in the glycolysis, pyruvate catabolism, amino acid catabolism and cell energy metabolism. New biological knowledge was obtained about the different patterns of glutamine and aspartic acid consumption by the two strains. It was observed that L. plantarum consumes more glutamine at low pH (pH 5.5) whereas the opposite applies to L. rhamnosus. Regarding aspartic acid, both of the strains consume it higher at low pH, and overall L. plantarum consumes it more. L. rhamnosus did not consume aspartic acid at pH 6.5.

Conclusion

The developed analytical protocol for real-time in vitro NMR measurements of bacterial metabolism allows a relatively easy investigation of different fermentation factors such as new strains, new substrates, cohabitations, temperature, and pH and has a great potential in biopreservation studies to discover new efficient bioprotective cultures.
  相似文献   
992.

Introduction

Essential oils are known to possess antimicrobial activity; thus, their use has played an important role over the years in medicine and for food preservation purposes.

Objective

The effect of clove oil and its major constituents as bactericidal agents on the global metabolic profiling of E. coli bacteria was assessed by means of metabolic alterations, using solid phase microextraction (SPME) as a sample preparation method coupled to complementary analytical platforms.

Method

E. Coli cultures treated with clove oil and its major individual components were sampled by HS-SPME-GCxGC-ToF/MS and SPME-UPLC–MS. Full factorial design was applied in order to estimate the most effective antibacterial agent towards E. coli. Central composite design and factorial design were applied to investigate parameters influencing metabolite coverage and efficiency by SPME.

Results

The metabolic profile, including 500 metabolites identified by LC–MS and 789 components detected by GCxGC-ToF/MS, 125 of which were identified as dysregulated metabolites, revealed changes in the metabolome provoked by the antibacterial activity of clove oil, and in particular its major constituent eugenol. Analyses of individual components selected using orthogonal projections to latent structures discriminant analysis showed a neat differentiation between control samples in comparison to treated samples in various sets of metabolic pathways.

Conclusions

The combination of a sample preparation method capable of providing cleaner extracts coupled to different analytical platforms was successful in uncovering changes in metabolic pathways associated with lipids biodegradation, changes in the TCA cycle, amino acids, and enzyme inhibitors in response to antibacterial treatment.
  相似文献   
993.

Introduction

Human primary cells originating from different locations within the body could differ greatly in their metabolic phenotypes, influencing both how they act during physiological/pathological processes and how susceptible/resistant they are to a variety of disease risk factors. A novel way to monitor cellular metabolism is through cell energetics assays, so we explored this approach with human primary cell types, as models of sclerotic disorders.

Objectives

In order to better understand pathophysiological processes at the cellular level, our goals were to measure metabolic pathway activities of endothelial cells and fibroblasts, and determine their metabolic phenotype profiles.

Methods

Biolog Phenotype MicroArray? technology was used for the first time to characterize metabolic phenotypes of diverse primary cells. These colorimetric assays enable detection of utilization of 367 specific biochemical substrates by human endothelial cells from the coronary artery (HCAEC), umbilical vein (HUVEC) and normal, healthy lung fibroblasts (NHLF).

Results

Adenosine, inosine, d-mannose and dextrin were strongly utilized by all three cell types, comparable to glucose. Substrates metabolized solely by HCAEC were mannan, pectin, gelatin and prevalently tricarballylic acid. HUVEC did not show any uniquely metabolized substrates whereas NHLF exhibited strong utilization of sugars and carboxylic acids along with amino acids and peptides.

Conclusion

Taken together, we show for the first time that this simple energetics assay platform enables metabolic characterization of primary cells and that each of the three human cell types examined gives a unique and distinguishable profile.
  相似文献   
994.
995.

Introduction

Meningitis, a morbidly infectious central nervous system pathology is accompanied by acute inflammation of the meninges, causing raised intracranial pressure linked with serious neurological sequelae.

Objective

To observe the variation in the metabolic profile, that may occur in serum and urine along with CSF in adults using 1H NMR spectroscopy, with an attempt of appropriate and timely treatment regimen.

Methods

The 1H NMR-based metabolomics has been performed in 115 adult subjects for differentiating bacterial meningitis (BM) and tubercular meningitis (TBM).

Results

The discriminant function analysis (DFA) of the three bio-fluids collectively identified 3-hydroxyisovalerate, lactate, glucose, formate, valine, alanine, ketonic bodies, malonate and choline containing compounds (choline and GPC) as significant metabolites among cases versus control group. The differentiation of bacterial meningitis and tuberculous meningitis (BM vs. TBM) can be done on the basis of identification of 3-hydroxyisovalerate, isobutyrate and formate in case of CSF (with a correct classification of 78 %), alanine in serum (correct classification 60 %), valine and acetone in case of urine (correct classification 89.1 %). The NMR spectral bins based orthogonal signal correction principal component analysis score plots of significant metabolites obtained from DFA also provided group classification among cases versus control group in CSF, serum and urine samples. The variable importance in projection scores also identified similar significant metabolites as obtained from DFA, collectively in CSF, serum and urine samples, responsible for differentiation of meningitis.

Conclusion

The CSF contained metabolites which are formed during infection and inflammation, and these were also found in significant quantity in serum and urine samples.
  相似文献   
996.
The severity and/or progression of osteonecrosis of the femoral head (ONFH) are commonly assessed by radiography, nuclear magnetic resonance image which aren’t invariably correlated to severity of disease and may be disturbed by other factors. Consequently, exploring the novel biochemical signatures of ONFH may be beneficial for diagnosing and understanding this disease. In this work, a bone trabecula metabolomics was undertaken to determine the expression pattern of low molecular mass metabolites in patients of femoral head necrosis based on the ultra-performance liquid chromatography/time-of-flight tandem mass spectrometry (UPLC/TOF MS/MS). Histological study showed that necrotic bone was characterized by necrosis, fibrosis and lacuna, but adjacent “normal” bone was pathologically normal. Principal component analysis in combination with orthogonal partial least-squares discrimination analysis was used to find out changed metabolites. MS/MS was used to speculate the corresponding molecule. Both osteonecrotic bone trabecula (ONBT) and adjacent “normal” bone trabecula (ANBT) showed higher levels of amino acids, such as proline, arginine, glutamine, dipeptides and lower levels of antioxidants. Most disrupted lipids, such as fatty acid esters, glycerophospholipids, sphingolipids, were found in osteonecrotic zone. The area under the receiver operating characteristic curve of combinational biomarkers (d-arginine, l-proline, l-carnitine, inosine) in ONBT and ANBT was 0.996 and 0.950, respectively. Our findings might provide a significant insight to understand the metabolic mechanism and diagnosis biomarkers of ONFH in the future.  相似文献   
997.
The study was designed to investigate whether crown ether containing dipeptide Boc-12-crown-4-l-DOPA-Gly-OMe has potential to induce meiotic cell cycle arrest and apoptosis in rat eggs cultured in vitro. The immature female rats were subjected to superovulation induction protocol and ovulated eggs were collected from ampulla of the fallopian tube. Ovulated eggs arrested at metaphase-II (M-II) stage of meiotic cell cycle were cultured in media-199 with or without various concentrations (0.0, 0.025, 0.050, 0.10, and 0.20 mM) of dipeptide for 3 h in vitro. Morphological apoptotic changes, hydrogen peroxide (H2O2) concentration, cytochrome c level, caspase-3 level as well as activity and DNA fragmentation were analysed in eggs cultured in vitro. Culture of M-II arrested eggs in plain medium for 3 h in vitro induced meiotic exit from M-II arrest in majority of eggs as evidenced by initiation of extrusion of second polar body (II PB). The dipeptide induced maintenance of M-II arrest and morphological apoptotic features in a concentration-dependent manner prior to degeneration. The dipeptide-induced morphological features were associated with increased H2O2 and cytochrome c levels in treated eggs. The increased cytochrome c induced caspase-3 level and activity and thereby DNA fragmentation as evidenced by DAB positive staining in treated eggs. Our results suggest that dipeptide Boc-12-C-4-l-DOPA-Gly-OMe induces cell cycle arrest at M-II stage and apoptosis in rat eggs cultured in vitro.  相似文献   
998.
The cAMP-dependent protein kinase (PKA) is the best understood member of the superfamily of serine–threonine protein kinases and is involved in controlling a variety of cellular processes. Measurements of PKA activity traditionally relied on the use of [32P]-labeled ATP as the phosphate donor and a protein or peptide substrate as the phosphoaceptor. Recently non-isotopic assays for the PKA have been developed and this paper presents an improvement of a fluorometric assay for measuring the activity of PKA. Three peptides were synthesized with the following sequences: LRRASLG (Kemptide), LRRASLGK (Kemptide-Lys8) and LRRASLGGGLRRASLG (Bis-Kemptide), these have in common the substrate sequence recognized by the PKA (RRXS/TΨ), where X is any amino acid and Ψ is a hydrophobic amino acid. Optimal conditions were established for the non-radioactive assay to detect the PKA activity by phosphorylation of these three peptides that are covalently linked to fluorescamine at their N-terminus. The phosphorylated and non-phosphorylated peptides were easily separated by electrophoresis, identified and quantified with optical densitometry and ultraviolet light. The fluorescamine-labeled Kemptide-Lys8 substrate (Fluram-Kemptide-Lys8) was used to calculate the Km and Vmax of the catalytic subunit of PKA from pig heart and showed a detection limit of 260 pmol, a linear range between 700 and 1150 pmol with a linear regression R 2 = 0.956.  相似文献   
999.
1000.

Introduction

The adenomatous polyposis coli (APC) gene is a tumor suppressor gene that is inactivated in the initiation of colorectal neoplasia. Apc Min/+ mice, which possess a heterozygous APC mutation, develop numerous adenomatous polyps, which are similar to those observed in familial adenomatous polyposis (FAP) in humans. However, unlike FAP patients, Apc Min/+ mice predominantly develop adenomatous polyps in the small intestine. The metabolic changes associated with the development of polyps in the small and large intestine remain to be investigated.

Objectives

The objective of this study was to elucidate the metabolic changes associated with intestinal polyp formation.

Methods

We compared the metabolite levels of pairs of polyp and non-polyp tissues obtained from the small intestines (n = 12) or large intestines (n = 7) of Apc Min/+ mice. To do this, we analyzed the tissue samples using two methods, liquid chromatography-tandem mass spectrometry (1) with a pentafluorophenylpropyl column for cation analysis, and (2) with a C18 reversed phase column coupled to an ion-pair reagent for anion analysis.

Results

Pathway mapping of the metabolites whose levels were significantly altered revealed that the polyp tissue of the small intestine contained significantly higher levels of intermediates involved in glycolysis, the pentose phosphate pathway, nucleotide metabolism, or glutathione biosynthesis than in the equivalent non-polyp tissue. In addition, significantly higher levels of methionine cycle intermediates were detected in the polyp tissues of both the large and small intestines. Organ-dependent (small vs. large intestine) differences were also detected in the levels of most amino acids and urea cycle intermediates.

Conclusion

Our results indicate that various metabolic changes are associated with polyp development, and understanding these alterations could make it possible to evaluate the treatment response of colorectal cancer earlier.
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号